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Abstract—A one-dimensional structure with segmentwise constant specific stiffness is to have a prescribed funda-
mental frequency. The number of segments of constant specific stiffness is given, but their boundaries and specific
stiffnesses are to be determined to minimize the structural weight. A sufficient condition for optimality is estab-
lished and its use is illustrated by an example.

1. THEORY

THE problem of minimum mass design with specified natural frequencies has been investi-
gated by Turner [1]. In his analysis, the continuous structure was replaced by a system with
a finite number of degrees of freedom, and the problem was formulated as a Lagrange
problem in variational calculus with the free vibration equations as side conditions.
Taylor [2] discussed the same problem using an energy approach. In the present paper,
the following more realistic problem is considered: a one-dimensional? elastic structure
(rod, beam, frame) with segmentwise constant specific] stiffness is to carry given point
masses at specified locations in addition to its own mass and to have a prescribed funda-
mental frequency . The number n of segments of constant specific stiffness is prescribed,
but their boundaries and specific stiffnesses are at the choice of the designer who wishes
to minimize the structural weight.

The location of a cross section of the one-dimensional structure will be specified by
its distance x (measured along the structure) from a fixed reference section. If it is desirable
to indicate that a cross section is in the ith segment of constant stiffness, its location will
be referred to as x; rather than x. The location of the point mass M, will be denoted by
x¥ (@ =1,2,...,v). The specific mass of the structure will be assumed to be a linear func-
tion of the specific stiffness ; in particular, the specific mass of the ith segment will be written
as a? +b?s;, where s; is the specific stiffness of the ith segment and a; and b; are given con-
stants.

The assumption of a linear relation between specific mass and stiffness does impose
some limitations on the type of the structural members. However, from the point of view
that every continuous function can be well approximated by successive linear functions,
the limitation is not too severe, and the assumption will simplify the solution of the problem.

In practical design, the constants g;, b; for an element are known only after the approx-
imate value of the stiffness of the segment is known. In this case, some approximate values
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t For brevity, the theory is developed for one-dimensional structures, tut its extension to two-dimensional

structures (disks, plates, shells) presents no difficulties.
1 Throughout this paper, the term “specific’” will be used to indicate “‘per unit length.”
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of a; and b;, for example an average value for the sections available for the design, can be
used in a first solution of the problem which furnishes first values of the stiffnesses on the
basis of which better values may be chosen for the a; and b;. This kind of iteration can be
continued, if necessary.

As a first step toward the solution of the problem, assume that the boundaries of the
segments of constant stiffness are given so that only the stiffness values s; remain to be
determined. An ordered set of n stiffness values then specifies a design. Let s; and 3,
(i=1,2,...,n) be two designs with the same fundamental frequency w, and denote their
fundamental modes by u(x) and #(x). From the fact that the square of the fundamental
frequency can be written as a Rayleigh quotient, there follows the relation

Z 5; | e[u(x;)] dx;
Y @ b7 [t v, + 3. Mo

Z 5 f ei(x;)] dx;
T S (@ +b35) [ @) dxi+ 3. Mat(xE)’

i

(1)

where s;e[u(x;)] is twice the specific strain energy associated with the displacement u(x;).
Forexample, ifthe ith segment of a rod has the cross section A;, then s;e[ui(x;)] = EA{u/'(x)]?,
for the axial vibration, where E is Young’s modulus and the prime denotes differentiation
with respect to x;. The integrals in (1) are extended over the segment x;.

Since the displacement field wu(x) is kinematically admissible for the design §;,
(i=1,2,...,n),it follows from Rayleigh’s principle that

Z 5 f e[u(x;)] dx;
T S (@ +b35) [@(x) dx + Y. Ma(x¥)

i

Y5 [ efu(x;)] dx;
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The equality involving the first and second members in (1) and the inequality involving
the first and third members in (2) furnish the relations

s, f felut)) - Borulx)} dxs = 0T of f ) dx+ Y Maleeh), ()

55 [ {etut)— broruiea) dx, = o L [udle) drit ¥ Mal0a)). 9
Subtraction of (3) from (4) yields
3 5,-5) [ fefute)) — oz dx; > 0. 5)

Now, the difference between the structural weights of the designs §; and s, is given by

AW = Z b,-z(.s_‘i—si)li, (6)
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where [; is the length of the ith segment. Inspection of (5) and (6) shows that AW will be
nonnegative if

=0 f {e[u(x;)] —btw*u*(x;)} dx; is independent of i. (7
Accordingly, a design with the prescribed frequency w and a fundamental mode u(x)
satisfying (7) will not be heavier than any other design with the same fundamental frequency.

The optimality condition (7) has been shown to be sufficient. That it is also necessary
can be established in the manner used in [3] to prove the necessity of a similar optimality
condition for elastic minimum-weight design for prescribed stiffness.

As the length ; of the typical segment tends to zero, the optimality condition (7) tends
to the condition given by Prager and Taylor [4] for structures with continuously varying
specific stiffness where b; is a constant. This condition requires the integrand in (7) divided
by b? to be constant along the structure.

Theoretically, the problem can be solved in the following procedures: (a) From the
equations of motion and the boundary (or transition) conditions for all segments, solve
for the displacements u; in terms of the fundamental frequency w, the stiffnessses s;, and
the lengths I; of the segments. (b) Determine the stiffnesses s;, in terms of w and the lengths
[;, from the optimality conditions (7) and the boundary (or transition) conditions involving
the point masses. (c) The total weight of the structure is minimized with respect to the
ratios of the lengths /;. A simple problem is treated in the following example.

2. EXAMPLE

A vertical rod is fixed at the upper end x = 0 and carries a mass M at the lower end
x = [; it is to have the given fundamental frequency w in longitudinal vibration. Each of
the segments 0 < x < Iy and I; < x <! =141, of the rod is to have constant specific
stiffness. The stiffness values s; and s, are to be determined to minimize the weight of the
rod.

Since specific mass and stiffness of a prismatic rod are p4 and EA, where p and E
respectively denote density and Young’s modulus of the rod material, a? = 0 and
b? = p/E = b*. Moreover, e = [u/(x)]®. With the abbreviations u, and u, for u(x,) and
u(x,), the optimality condition (7) becomes

), § W? -b2w*u?)dx, =% [i Ww? —b*w*ud)dx,. (8)
The equations of motion are
+b*w?uy, =0,  u3+b*w’u, =0, 9)
with the boundary conditions
u(0) =0,  EAus(l) = M uy(l), (10)

and the transition conditions

uy(ly) = uy(ly), Ay (1) = Aui(ly). (11)
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The problem (9), (10), (11) is homogeneous. In view of the first boundary condition (10)
and the transition conditions (11), the fundamental mode u(x) has the form

u; = cA, sin bwx,

Il

u, = c[A; cos bwl; sin baw(x—1,)+ A, sin bwl; cos bax(x—1)], (12)

where c is an arbitrary constant with dimension (length) ™!

Equations for the cross-sectional areas 4, and 4, may now be obtained by substituting
(12) into the optimality condition (8) and the second boundary condition (10). With
n = A,/A,, the optimality condition furnishes the quadratic equation

. . I .
2 cos?bwl, sin 2bwl, — 25 sin®bwl, sin 2bwl, —sin?bwl, sin 2bw!, —1—2 sin 2bwl;, = 0. (13)
1

Note that # is positive by definition. The domain # > 0 is shown in Fig. 1. Note that the
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FiG. 1. Equation (13) has precisely one positive root in open unshaded region and no positive root in
closed shaded region.

curve ABC represents the least upper bound of K of the fundamental frequency. If (13) has
a positive root n for the given values of K = bwl and L = [/, the cross-sectional areas of
the optimal design are obtained from the second boundary condition (10). Doing this, one
finds

_sin KL cos K(1 —L)+#ncos KL sin K(1 ~L) (UZMI)
2~ ycosKLcos K(1—L)—sin KLsin K(1—L)\ KE

Ay =nA;. (14)

The weight of the optimal design for given L is proportional to the dimensionless

volume
KEA,

w*Ml

V={1—(—nL} (15)
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where the dependence of A, A, and n on L and K is expressed by (14) and (13). If L isa
variable at the choice of the designer rather than being prescribed, the expression (15)
must be minimized with respect to L under the constraints (14) and (13). Over an essential
range of K, the curves marked L and # in Fig. 2 show the dependence of the values of L
and # for the optimal design on K. Similarly, the curves marked ¥ and R in Fig. 3 show the
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FIG.2. Land n = A4,/4, vs. K = bwl.
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FI1G. 3. R (ratio of volumes of optimal design and rod of constant cross section) and V (dimensionless
volume of optimal design) vs. K = bhwl.

variations of the dimensionless volume V of the optimal design and the ratio R of this
volume to the volume of the prismatic rod with the same fundamental frequency :
Ay +A45(1-1))

R = o MP/EK) an K (16)
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Note that R = 0 for K = n/2, which is the maximum of K for a rod of constant stiffness.
The fact that R is close to 1 for K < 05 implies that, for low frequencies, the optimal
design is nearly prismatic.
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AGcTpakT—OaHOMepHas KOHCTPYKLMS, C TOCTOSIHHOM CrieLH(HUYeCKOi )eCTKOCTBIO OTENbHbIX CETMEHTOB,
obnanaer 3aJaHHON OCHOBHOM YacToTol. UHCIO CErMeHTOB IS TIOCTOSAHHOMN CHEUM(pHUECKON KECKOCTH
3a[aHO, HO MX IPaHMULI M Crelu(UYECcKHe KECTKOCTH CAEAYET ONPEAEMTh NyTEM MHUHHMAJIM3aUHH BECA
KOHCTPYKUMH. YCTaHABJIMBAETCA [OCTATOYHOE YCIOBHE ONTUMANBHOCTH. Ee HMCNOnb30BaHME WILIIOCTPH-
pYeTCs IPUMEPOM.,



